2022
Gil Del Val, A., Penalva, M., Veiga, F., & Iriondo, E. (2022). Quality monitoring of blind fasteners installation: An approach from the manufacturing chain and visual analytics. In IFAC PAPERSONLINE (Vol. 55, Issues 14th IFAC Workshop on Intelligent Manufacturing Systems (IMS) CL-Tel Aviv, ISRAEL PU-ELSEVIER PI-AMSTERDAM PA-RADARWEG 29a, 1043 NX AMSTERDAM, NETHERLANDS, pp. 270–276). https://doi.org/10.1016/j.ifacol.2022.04.205
Dass, A., Srivastava, S., Gupta, M., Khari, M., Fuente, J. P., & Verdu, E. (n.d.). Modelling and control of fuzzy-based systems using intelligent water drop algorithm. EXPERT SYSTEMS. https://doi.org/10.1111/exsy.13124
Liu, J., Dey, N., Das, N., Crespo, R. G., Shi, F., & Liu, C. (2022). Brain fMRI segmentation under emotion stimuli incorporating attention-based deep convolutional neural networks. APPLIED SOFT COMPUTING, 122. https://doi.org/10.1016/j.asoc.2022.108837
Suarez-Cetrulo, A. L., Quintana, D., & Cervantes, A. (2023). A survey on machine learning for recurring concept drifting data streams. EXPERT SYSTEMS WITH APPLICATIONS, 213. https://doi.org/10.1016/j.eswa.2022.118934
Gupta, N., Gupta, S., Khosravy, M., Dey, N., Joshi, N., Crespo, R. G., & Patel, N. (2022). economic IoT strategy: the future technology for health monitoring and diagnostic of agriculture vehicles (Retraction of Vol 32, Pg 1117, 2020). JOURNAL OF INTELLIGENT MANUFACTURING, 33(8), 2487. https://doi.org/10.1007/s10845-022-02035-7
Xin, Q., Alazab, M., Crespo, R. G., & Montenegro-Marin, C. E. (2022). AI-based quality of service optimization for multimedia transmission on Internet of Vehicles (IoV) systems. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 52. https://doi.org/10.1016/j.seta.2022.102055
Mukherjee, A., Panja, A. K., Dey, N., & Crespo, R. G. (n.d.). An intelligent edge enabled 6G-flying ad-hoc network ecosystem for precision agriculture. EXPERT SYSTEMS. https://doi.org/10.1111/exsy.13090
Lamo, P., Perales, M., & De-La-fuente-valentín, L. (2022). Case of Study in Online Course of Computer Engineering during COVID-19 Pandemic. Electronics (Switzerland), 11(4). https://doi.org/10.3390/electronics11040578
Pascual Espada, J., Alonso-Virgos, L., & Gonzalez Crespo, R. (2022). Analysis of the Impact of Applying UX Guidelines to Reduce Noise and Focus Attention. In H. Degen & S. Ntoa (Eds.), ARTIFICIAL INTELLIGENCE IN HCI, AI-HCI 2022 (Vol. 13336, Issues 3rd International Conference on Artificial Intelligence in HCI (AI-HCI) Held as Part of the 24th International Conference on Human-Computer Interaction (HCII) CL-ELECTR NETWORK PU-SPRINGER INTERNATIONAL PUBLISHING AG PI-CHAM PA-GEWERBESTRASSE, pp. 80–99). https://doi.org/10.1007/978-3-031-05643-7_6
Liu, H., Zhang, Y., Lian, K., Zhang, Y., Sanjuan Martinez, O., & Gonzalez Crespo, R. (2022). Health care data analysis and visualization using interactive data exploration for sportsperson. SCIENCE CHINA-INFORMATION SCIENCES, 65(6). https://doi.org/10.1007/s11432-021-3412-9
Arizmendi, M., Veiga, F., Jimenez, A., & Gil Del Val, A. (2022). Transient temperature distribution in a rotating cylinder subject to a surface heat source and convective cooling. NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 82(11), 743–764. https://doi.org/10.1080/10407782.2022.2083869
Namasudra, S., Crespo, R. G., & Kumar, S. (2022). Introduction to the special section on advances of machine learning in cybersecurity (VSI-mlsec). COMPUTERS & ELECTRICAL ENGINEERING, 100. https://doi.org/10.1016/j.compeleceng.2022.108048
Hsu, C.-H., Marin, C. E. M., Crespo, R. G., & El-Sayed, H. F. M. (2022). Guest Editorial Introduction to the Special Section on Social Computing and Social Internet of Things. IEEE Transactions on Network Science and Engineering, 9(3), 947–949. https://doi.org/10.1109/TNSE.2022.3167460
Du, Y., Gonzalez Crespo, R., & Sanjuan Martinez, O. (n.d.). Human emotion recognition for enhanced performance evaluation in e-learning. PROGRESS IN ARTIFICIAL INTELLIGENCE. https://doi.org/10.1007/s13748-022-00278-2
Zhongshan, C., Xinning, F., Martinez, O. S., & Crespo, R. G. (2022). Hybrid Approach Based on Machine Learning for Hand Shape and Key Point’s Estimation. JOURNAL OF INTERCONNECTION NETWORKS, 22(SUPP01). https://doi.org/10.1142/S0219265921410218
Khattak, M. I., Saleem, N., Gao, J., Verdu, E., & Fuente, J. P. (2022). Regularized sparse features for noisy speech enhancement using deep neural networks. Computers and Electrical Engineering, 100. https://doi.org/10.1016/j.compeleceng.2022.107887
Castillo, E. N. R., Montenegro-Marin, F. G., Farfan, L. I. L., Rubiano, E. F. L., Montenegro-Marin, C. E., & Crespo, R. A. G. (2022). Corporate Exhibitions and Marketing as a Result of the Integration Project at the University of Cundinamarca. In J. L. Reis, M. K. Peter, R. Cayolla, & Z. Bogdanovic (Eds.), MARKETING AND SMART TECHNOLOGIES, ICMARKTECH 2021, VOL 2 (Vol. 280, Issue International Conference on Marketing and Technologies (ICMarkTech) CL-Tenerife, SPAIN PU-SPRINGER INTERNATIONAL PUBLISHING AG PI-CHAM PA-GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND, pp. 685–695). https://doi.org/10.1007/978-981-16-9272-7_57
Srivastava, V., Srivastava, S., Chaudhary, G., & Blanco Valencia, X. P. (n.d.). Performance improvement and Lyapunov stability analysis of nonlinear systems using hybrid optimization techniques. EXPERT SYSTEMS. https://doi.org/10.1111/exsy.13140
Khattak, M. I., Saleem, N., Nawaz, A., Almani, A. A., Umer, F., & Verdú, E. (2022). ERBM-SE: Extended Restricted Boltzmann Machine for Multi-Objective Single-Channel Speech Enhancement. International Journal of Interactive Multimedia and Artificial Intelligence, 7(4), 185–195. https://doi.org/10.9781/ijimai.2022.03.002
Xin, Q., Alazab, M., Diaz, V. G., Enrique Montenegro-Marin, C., & Gonzalez Crespo, R. (2022). A deep learning architecture for power management in smart cities. ENERGY REPORTS, 8, 1568–1577. https://doi.org/10.1016/j.egyr.2021.12.053
Cheng, X., Kadry, S., Meqdad, M. N., & Gonzalez Crespo, R. (2022). CNN supported framework for automatic extraction and evaluation of dermoscopy images. JOURNAL OF SUPERCOMPUTING, 78(15), 17114–17131. https://doi.org/10.1007/s11227-022-04561-w
Liu, J., Dey, N., Gonzalez Crespo, R., Shi, F., & Liu, C. (2022). Inadequate dataset learning for major depressive disorder MRI semantic classification. IET IMAGE PROCESSING, 16(6), 1648–1656. https://doi.org/10.1049/ipr2.12437
Gupta, N., Khosravy, M., Patel, N., Dey, N., & Crespo, R. G. (2022). Lightweight Computational Intelligence for IoT Health Monitoring of Off-Road Vehicles: Enhanced Selection Log-Scaled Mutation GA Structured ANN. IEEE Transactions on Industrial Informatics, 18(1), 611–619. https://doi.org/10.1109/TII.2021.3072045
Chakraborty, S., Pradhan, R., Dey, N., Gonzalez Crespo, R., & Tavares, J. M. R. S. (2022). Effect of optimization framework on rigid and non-rigid multimodal image registration. SCIENCEASIA, 48, 1–11. https://doi.org/10.2306/scienceasia1513-1874.2022.S001
Saleem, N., Gao, J., Irfan, M., Verdu, E., & Fuente, J. P. (2022). E2E-V2SResNet: Deep residual convolutional neural networks for end-to-end video driven speech synthesis. Image and Vision Computing, 119. https://doi.org/10.1016/j.imavis.2022.104389
Li, R., Wu, Y., Wu, Q., Dey, N., Crespo, R. G., & Shi, F. (2022). Emotion stimuli-based surface electromyography signal classification employing Markov transition field and deep neural networks. MEASUREMENT, 189. https://doi.org/10.1016/j.measurement.2021.110470
Fernandez-Lucio, P., Del Val, A. G., Plaza, S., Pereira, O., Fernandez-Valdivielso, A., & de Lacalle, L. N. L. (2023). Threading holder based on axial metal cylinder pins to reduce tap risk during reversion instant. ALEXANDRIA ENGINEERING JOURNAL, 66, 845–859. https://doi.org/10.1016/j.aej.2022.10.060
Wu, X., Li, P., Zhao, M., Liu, Y., Gonzalez Crespo, R., & Herrera-Viedma, E. (2022). Customer churn prediction for web browsers. EXPERT SYSTEMS WITH APPLICATIONS, 209. https://doi.org/10.1016/j.eswa.2022.118177
Wahbi, M., El Bakali, I., Ez-zahouani, B., Azmi, R., Moujahid, A., Zouiten, M., Alaoui, O. Y., Boulaassal, H., Maatouk, M., & El Kharki, O. (2023). A deep learning classification approach using high spatial satellite images for detection of built-up areas in rural zones: Case study of Souss-Massa region-Morocco. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 29. https://doi.org/10.1016/j.rsase.2022.100898
Crespo, R. G. (2022). Editor’s Note. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 7(7), 4–5. https://doi.org/10.9781/ijimai.2022.11.009
Elias Romero, E., David Camacho, C., Enrique Montenegro, C., Esneider Acosta, O., Gonzalez Crespo, R., Eduardo Gaona, E., & Herrera Martinez, M. (2022). Integration of DevOps Practices on a Noise Monitor System with CircleCI and Terraform. ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 13(4). https://doi.org/10.1145/3505228
Moujahid, A., & Vadillo, F. (2022). Modeling and Calibration for Some Stochastic Differential Models. FRACTAL AND FRACTIONAL, 6(12). https://doi.org/10.3390/fractalfract6120707
Klioner, S. A., Lindegren, L., Mignard, F., Hernandez, J., Ramos-Lerate, M., Bastian, U., Biermann, M., Bombrun, A., de Torres, A., Gerlach, E., Geyer, R., Hilger, T., Hobbs, D., Lammers, U. L., McMillan, P. J., Steidelmueller, H., Teyssier, D., Raiteri, C. M., Bartolome, S., … Collaboration, G. (2022). Gaia Early Data Release 3 The celestial reference frame (Gaia-CRF3). ASTRONOMY & ASTROPHYSICS, 667. https://doi.org/10.1051/0004-6361/202243483
Del Val, A. G., Alonso, U., Veiga, F., & Arizmendi, M. (2023). Wear mechanisms of TiN coated tools during high-speed tapping of GGG50 nodular cast iron. WEAR, 514–515. https://doi.org/10.1016/j.wear.2022.204558
Khosravy, M., Nakamura, K., Nitta, N., Dey, N., Crespo, R. G., Herrera-Viedma, E., & Babaguchi, N. (2023). Social IoT Approach to Cyber Defense of a Deep-Learning-Based Recognition System in Front of Media Clones Generated by Model Inversion Attack. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 53(5), 2694–2704. https://doi.org/10.1109/TSMC.2022.3220080
Alirezazadeh, P., Dornaika, F., & Moujahid, A. (2022). A deep learning loss based on additive cosine margin: Application to fashion style and face recognition. APPLIED SOFT COMPUTING, 131. https://doi.org/10.1016/j.asoc.2022.109776
Bhaskar, K. V., Ramesh, S., Verdu, E., Karunanithi, K., & Raja, P. S. (2023). An optimal power flow solution to deregulated electricity power market using meta-heuristic algorithms considering load congestion environment. ELECTRIC POWER SYSTEMS RESEARCH, 214. https://doi.org/10.1016/j.epsr.2022.108867
Proano-Guevara, D., Blanco Valencia, X., Rosero-Montalvo, P. D., & Peluffo-Ordonez, D. H. (2022). Electromiographic Signal Processing Using Embedded Artificial Intelligence: An Adaptive Filtering Approach. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 7(5), 40–50. https://doi.org/10.9781/ijimai.2022.08.009
Khosravy, M., Gupta, N., Dey, N., & Gonzalez Crespo, R. (2022). Underwater IoT Network by Blind MIMO OFDM Transceiver Based on Probabilistic Stone’s Blind Source Separation. ACM TRANSACTIONS ON SENSOR NETWORKS, 18(3). https://doi.org/10.1145/3462674
Assis, M., Tello, A. C. M., Abud, F. S. A., Negre, P., Ribeiro, L. K., Ribeiro, R. A. P., Masunaga, S. H., Lima, A. E. B., Luz Jr, G. E., Jardim, R. F., Silva, A. B. F., Andres, J., & Longo, E. (2022). Bridging experiment and theory: Morphology, optical, electronic, and magnetic properties of MnWO4. APPLIED SURFACE SCIENCE, 600. https://doi.org/10.1016/j.apsusc.2022.154081
Jahnavi, Y., Elango, P., Raja, S. P., Parra Fuente, J., & Verdu, E. (2023). A new algorithm for time series prediction using machine learning models. EVOLUTIONARY INTELLIGENCE, 16(5), 1449–1460. https://doi.org/10.1007/s12065-022-00710-5
Alonso-Misol Gerlache, H., Moreno-Ger, P., & Fuente Valentin, L. D. la. (2022). Towards the Grade’s Prediction. A Study of Different Machine Learning Approaches to Predict Grades from Student Interaction Data. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 7(4), 196–204. https://doi.org/10.9781/ijimai.2021.11.007
Dornaika, F., & Moujahid, A. (2022). Multi-View Graph Fusion for Semi-Supervised Learning: Application to Image-Based Face Beauty Prediction. ALGORITHMS, 15(6). https://doi.org/10.3390/a15060207
Rajmohan, R., Kumar, T. A., Julie, E. G., Robinson, Y. H., Vimal, S., Kadry, S., & Crespo, R. G. (2022). G-Sep: A Deep Learning Algorithm for Detection of Long-Term Sepsis Using Bidirectional Gated Recurrent Unit. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 30(SUPP01), 1–29. https://doi.org/10.1142/S0218488522400013
Amin, J., Anjum, M. A., Sharif, M., Jabeen, S., Kadry, S., & Ger, P. M. (2022). A New Model for Brain Tumor Detection Using Ensemble Transfer Learning and Quantum Variational Classifier. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022. https://doi.org/10.1155/2022/3236305
Moujahid, A., & Vadillo, F. (2022). Energy analysis of bursting Hindmarsh-Rose neurons with time-delayed coupling. CHAOS SOLITONS & FRACTALS, 158. https://doi.org/10.1016/j.chaos.2022.112071
Alirezazadeh, P., Dornaika, F., & Moujahid, A. (2022). Deep Learning with Discriminative Margin Loss for Cross-Domain Consumer-to-Shop Clothes Retrieval. SENSORS, 22(7). https://doi.org/10.3390/s22072660
Mateusz Ciok, K., Pascual Espada, J., & Gonzalez Crespo, R. (2024). Flex-request: Library to make remote changes in the communication of IoT devices. EXPERT SYSTEMS, 41(6). https://doi.org/10.1111/exsy.12994
Peralta, A. (2022). Analysis of the influence of environmental factors on emotional well-being. DYNA, 97(2), 169–175. https://doi.org/10.6036/10201
Francisco, V., Moreno-Ger, P., & Hervas, R. (2022). Application of Competitive Activities to Improve Students’ Participation. IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 15(1), 2–14. https://doi.org/10.1109/TLT.2022.3153174
Alonso, S., Moran, A., Perez, D., Prada, M. A., Fuertes, J. J., & Dominguez, M. (2022). Reconstructing Electricity Profiles in Submetering Systems Using a GRU-AE Network. In L. Iliadis, C. Jayne, A. Tefas, & E. Pimenidis (Eds.), ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022 (Vol. 1600, Issues 23rd International Conference on Engineering Applications of Neural Networks (EAAAI/EANN) CL-Chersonissos, GREECE PU-SPRINGER INTERNATIONAL PUBLISHING AG PI-CHAM PA-GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND, pp. 247–259). https://doi.org/10.1007/978-3-031-08223-8_21