2022

miércoles,6 julio, 2022

Gil Del Val, A., Penalva, M., Veiga, F., & Iriondo, E. (2022). Quality monitoring of blind fasteners installation: An approach from the manufacturing chain and visual analytics. In IFAC PAPERSONLINE (Vol. 55, Issues 14th IFAC Workshop on Intelligent Manufacturing Systems (IMS) CL-Tel Aviv, ISRAEL PU-ELSEVIER PI-AMSTERDAM PA-RADARWEG 29a, 1043 NX AMSTERDAM, NETHERLANDS, pp. 270–276). https://doi.org/10.1016/j.ifacol.2022.04.205

Dass, A., Srivastava, S., Gupta, M., Khari, M., Fuente, J. P., & Verdu, E. (n.d.). Modelling and control of fuzzy-based systems using intelligent water drop algorithm. EXPERT SYSTEMS. https://doi.org/10.1111/exsy.13124

Liu, J., Dey, N., Das, N., Crespo, R. G., Shi, F., & Liu, C. (2022). Brain fMRI segmentation under emotion stimuli incorporating attention-based deep convolutional neural networks. APPLIED SOFT COMPUTING, 122. https://doi.org/10.1016/j.asoc.2022.108837

Suarez-Cetrulo, A. L., Quintana, D., & Cervantes, A. (2023). A survey on machine learning for recurring concept drifting data streams. EXPERT SYSTEMS WITH APPLICATIONS, 213. https://doi.org/10.1016/j.eswa.2022.118934

Gupta, N., Gupta, S., Khosravy, M., Dey, N., Joshi, N., Crespo, R. G., & Patel, N. (2022). economic IoT strategy: the future technology for health monitoring and diagnostic of agriculture vehicles (Retraction of Vol 32, Pg 1117, 2020). JOURNAL OF INTELLIGENT MANUFACTURING, 33(8), 2487. https://doi.org/10.1007/s10845-022-02035-7

Xin, Q., Alazab, M., Crespo, R. G., & Montenegro-Marin, C. E. (2022). AI-based quality of service optimization for multimedia transmission on Internet of Vehicles (IoV) systems. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 52. https://doi.org/10.1016/j.seta.2022.102055

Mukherjee, A., Panja, A. K., Dey, N., & Crespo, R. G. (n.d.). An intelligent edge enabled 6G-flying ad-hoc network ecosystem for precision agriculture. EXPERT SYSTEMS. https://doi.org/10.1111/exsy.13090

Lamo, P., Perales, M., & De-La-fuente-valentín, L. (2022). Case of Study in Online Course of Computer Engineering during COVID-19 Pandemic. Electronics (Switzerland), 11(4). https://doi.org/10.3390/electronics11040578

Pascual Espada, J., Alonso-Virgos, L., & Gonzalez Crespo, R. (2022). Analysis of the Impact of Applying UX Guidelines to Reduce Noise and Focus Attention. In H. Degen & S. Ntoa (Eds.), ARTIFICIAL INTELLIGENCE IN HCI, AI-HCI 2022 (Vol. 13336, Issues 3rd International Conference on Artificial Intelligence in HCI (AI-HCI) Held as Part of the 24th International Conference on Human-Computer Interaction (HCII) CL-ELECTR NETWORK PU-SPRINGER INTERNATIONAL PUBLISHING AG PI-CHAM PA-GEWERBESTRASSE, pp. 80–99). https://doi.org/10.1007/978-3-031-05643-7_6

Liu, H., Zhang, Y., Lian, K., Zhang, Y., Sanjuan Martinez, O., & Gonzalez Crespo, R. (2022). Health care data analysis and visualization using interactive data exploration for sportsperson. SCIENCE CHINA-INFORMATION SCIENCES, 65(6). https://doi.org/10.1007/s11432-021-3412-9

Arizmendi, M., Veiga, F., Jimenez, A., & Gil Del Val, A. (2022). Transient temperature distribution in a rotating cylinder subject to a surface heat source and convective cooling. NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 82(11), 743–764. https://doi.org/10.1080/10407782.2022.2083869

Namasudra, S., Crespo, R. G., & Kumar, S. (2022). Introduction to the special section on advances of machine learning in cybersecurity (VSI-mlsec). COMPUTERS & ELECTRICAL ENGINEERING, 100. https://doi.org/10.1016/j.compeleceng.2022.108048

Hsu, C.-H., Marin, C. E. M., Crespo, R. G., & El-Sayed, H. F. M. (2022). Guest Editorial Introduction to the Special Section on Social Computing and Social Internet of Things. IEEE Transactions on Network Science and Engineering, 9(3), 947–949. https://doi.org/10.1109/TNSE.2022.3167460

Du, Y., Gonzalez Crespo, R., & Sanjuan Martinez, O. (n.d.). Human emotion recognition for enhanced performance evaluation in e-learning. PROGRESS IN ARTIFICIAL INTELLIGENCE. https://doi.org/10.1007/s13748-022-00278-2

Zhongshan, C., Xinning, F., Martinez, O. S., & Crespo, R. G. (2022). Hybrid Approach Based on Machine Learning for Hand Shape and Key Point’s Estimation. JOURNAL OF INTERCONNECTION NETWORKS, 22(SUPP01). https://doi.org/10.1142/S0219265921410218

Khattak, M. I., Saleem, N., Gao, J., Verdu, E., & Fuente, J. P. (2022). Regularized sparse features for noisy speech enhancement using deep neural networks. Computers and Electrical Engineering, 100. https://doi.org/10.1016/j.compeleceng.2022.107887

Castillo, E. N. R., Montenegro-Marin, F. G., Farfan, L. I. L., Rubiano, E. F. L., Montenegro-Marin, C. E., & Crespo, R. A. G. (2022). Corporate Exhibitions and Marketing as a Result of the Integration Project at the University of Cundinamarca. In J. L. Reis, M. K. Peter, R. Cayolla, & Z. Bogdanovic (Eds.), MARKETING AND SMART TECHNOLOGIES, ICMARKTECH 2021, VOL 2 (Vol. 280, Issue International Conference on Marketing and Technologies (ICMarkTech) CL-Tenerife, SPAIN PU-SPRINGER INTERNATIONAL PUBLISHING AG PI-CHAM PA-GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND, pp. 685–695). https://doi.org/10.1007/978-981-16-9272-7_57

Srivastava, V., Srivastava, S., Chaudhary, G., & Blanco Valencia, X. P. (n.d.). Performance improvement and Lyapunov stability analysis of nonlinear systems using hybrid optimization techniques. EXPERT SYSTEMS. https://doi.org/10.1111/exsy.13140

Khattak, M. I., Saleem, N., Nawaz, A., Almani, A. A., Umer, F., & Verdú, E. (2022). ERBM-SE: Extended Restricted Boltzmann Machine for Multi-Objective Single-Channel Speech Enhancement. International Journal of Interactive Multimedia and Artificial Intelligence, 7(4), 185–195. https://doi.org/10.9781/ijimai.2022.03.002

Xin, Q., Alazab, M., Diaz, V. G., Enrique Montenegro-Marin, C., & Gonzalez Crespo, R. (2022). A deep learning architecture for power management in smart cities. ENERGY REPORTS, 8, 1568–1577. https://doi.org/10.1016/j.egyr.2021.12.053

Cheng, X., Kadry, S., Meqdad, M. N., & Gonzalez Crespo, R. (2022). CNN supported framework for automatic extraction and evaluation of dermoscopy images. JOURNAL OF SUPERCOMPUTING, 78(15), 17114–17131. https://doi.org/10.1007/s11227-022-04561-w

Liu, J., Dey, N., Gonzalez Crespo, R., Shi, F., & Liu, C. (2022). Inadequate dataset learning for major depressive disorder MRI semantic classification. IET IMAGE PROCESSING, 16(6), 1648–1656. https://doi.org/10.1049/ipr2.12437

Gupta, N., Khosravy, M., Patel, N., Dey, N., & Crespo, R. G. (2022). Lightweight Computational Intelligence for IoT Health Monitoring of Off-Road Vehicles: Enhanced Selection Log-Scaled Mutation GA Structured ANN. IEEE Transactions on Industrial Informatics, 18(1), 611–619. https://doi.org/10.1109/TII.2021.3072045

Chakraborty, S., Pradhan, R., Dey, N., Gonzalez Crespo, R., & Tavares, J. M. R. S. (2022). Effect of optimization framework on rigid and non-rigid multimodal image registration. SCIENCEASIA, 48, 1–11. https://doi.org/10.2306/scienceasia1513-1874.2022.S001

Saleem, N., Gao, J., Irfan, M., Verdu, E., & Fuente, J. P. (2022). E2E-V2SResNet: Deep residual convolutional neural networks for end-to-end video driven speech synthesis. Image and Vision Computing, 119. https://doi.org/10.1016/j.imavis.2022.104389

Li, R., Wu, Y., Wu, Q., Dey, N., Crespo, R. G., & Shi, F. (2022). Emotion stimuli-based surface electromyography signal classification employing Markov transition field and deep neural networks. MEASUREMENT, 189. https://doi.org/10.1016/j.measurement.2021.110470

Fernandez-Lucio, P., Del Val, A. G., Plaza, S., Pereira, O., Fernandez-Valdivielso, A., & de Lacalle, L. N. L. (2023). Threading holder based on axial metal cylinder pins to reduce tap risk during reversion instant. ALEXANDRIA ENGINEERING JOURNAL, 66, 845–859. https://doi.org/10.1016/j.aej.2022.10.060

Wu, X., Li, P., Zhao, M., Liu, Y., Gonzalez Crespo, R., & Herrera-Viedma, E. (2022). Customer churn prediction for web browsers. EXPERT SYSTEMS WITH APPLICATIONS, 209. https://doi.org/10.1016/j.eswa.2022.118177

Wahbi, M., El Bakali, I., Ez-zahouani, B., Azmi, R., Moujahid, A., Zouiten, M., Alaoui, O. Y., Boulaassal, H., Maatouk, M., & El Kharki, O. (2023). A deep learning classification approach using high spatial satellite images for detection of built-up areas in rural zones: Case study of Souss-Massa region-Morocco. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 29. https://doi.org/10.1016/j.rsase.2022.100898

Crespo, R. G. (2022). Editor’s Note. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 7(7), 4–5. https://doi.org/10.9781/ijimai.2022.11.009

Elias Romero, E., David Camacho, C., Enrique Montenegro, C., Esneider Acosta, O., Gonzalez Crespo, R., Eduardo Gaona, E., & Herrera Martinez, M. (2022). Integration of DevOps Practices on a Noise Monitor System with CircleCI and Terraform. ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 13(4). https://doi.org/10.1145/3505228

Moujahid, A., & Vadillo, F. (2022). Modeling and Calibration for Some Stochastic Differential Models. FRACTAL AND FRACTIONAL, 6(12). https://doi.org/10.3390/fractalfract6120707

Klioner, S. A., Lindegren, L., Mignard, F., Hernandez, J., Ramos-Lerate, M., Bastian, U., Biermann, M., Bombrun, A., de Torres, A., Gerlach, E., Geyer, R., Hilger, T., Hobbs, D., Lammers, U. L., McMillan, P. J., Steidelmueller, H., Teyssier, D., Raiteri, C. M., Bartolome, S., … Collaboration, G. (2022). Gaia Early Data Release 3 The celestial reference frame (Gaia-CRF3). ASTRONOMY & ASTROPHYSICS, 667. https://doi.org/10.1051/0004-6361/202243483

Del Val, A. G., Alonso, U., Veiga, F., & Arizmendi, M. (2023). Wear mechanisms of TiN coated tools during high-speed tapping of GGG50 nodular cast iron. WEAR, 514515. https://doi.org/10.1016/j.wear.2022.204558

Khosravy, M., Nakamura, K., Nitta, N., Dey, N., Crespo, R. G., Herrera-Viedma, E., & Babaguchi, N. (2023). Social IoT Approach to Cyber Defense of a Deep-Learning-Based Recognition System in Front of Media Clones Generated by Model Inversion Attack. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 53(5), 2694–2704. https://doi.org/10.1109/TSMC.2022.3220080

Alirezazadeh, P., Dornaika, F., & Moujahid, A. (2022). A deep learning loss based on additive cosine margin: Application to fashion style and face recognition. APPLIED SOFT COMPUTING, 131. https://doi.org/10.1016/j.asoc.2022.109776

Bhaskar, K. V., Ramesh, S., Verdu, E., Karunanithi, K., & Raja, P. S. (2023). An optimal power flow solution to deregulated electricity power market using meta-heuristic algorithms considering load congestion environment. ELECTRIC POWER SYSTEMS RESEARCH, 214. https://doi.org/10.1016/j.epsr.2022.108867

Proano-Guevara, D., Blanco Valencia, X., Rosero-Montalvo, P. D., & Peluffo-Ordonez, D. H. (2022). Electromiographic Signal Processing Using Embedded Artificial Intelligence: An Adaptive Filtering Approach. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 7(5), 40–50. https://doi.org/10.9781/ijimai.2022.08.009

Khosravy, M., Gupta, N., Dey, N., & Gonzalez Crespo, R. (2022). Underwater IoT Network by Blind MIMO OFDM Transceiver Based on Probabilistic Stone’s Blind Source Separation. ACM TRANSACTIONS ON SENSOR NETWORKS, 18(3). https://doi.org/10.1145/3462674

Assis, M., Tello, A. C. M., Abud, F. S. A., Negre, P., Ribeiro, L. K., Ribeiro, R. A. P., Masunaga, S. H., Lima, A. E. B., Luz Jr, G. E., Jardim, R. F., Silva, A. B. F., Andres, J., & Longo, E. (2022). Bridging experiment and theory: Morphology, optical, electronic, and magnetic properties of MnWO4. APPLIED SURFACE SCIENCE, 600. https://doi.org/10.1016/j.apsusc.2022.154081

Jahnavi, Y., Elango, P., Raja, S. P., Parra Fuente, J., & Verdu, E. (2023). A new algorithm for time series prediction using machine learning models. EVOLUTIONARY INTELLIGENCE, 16(5), 1449–1460. https://doi.org/10.1007/s12065-022-00710-5

Alonso-Misol Gerlache, H., Moreno-Ger, P., & Fuente Valentin, L. D. la. (2022). Towards the Grade’s Prediction. A Study of Different Machine Learning Approaches to Predict Grades from Student Interaction Data. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 7(4), 196–204. https://doi.org/10.9781/ijimai.2021.11.007

Dornaika, F., & Moujahid, A. (2022). Multi-View Graph Fusion for Semi-Supervised Learning: Application to Image-Based Face Beauty Prediction. ALGORITHMS, 15(6). https://doi.org/10.3390/a15060207

Rajmohan, R., Kumar, T. A., Julie, E. G., Robinson, Y. H., Vimal, S., Kadry, S., & Crespo, R. G. (2022). G-Sep: A Deep Learning Algorithm for Detection of Long-Term Sepsis Using Bidirectional Gated Recurrent Unit. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 30(SUPP01), 1–29. https://doi.org/10.1142/S0218488522400013

Amin, J., Anjum, M. A., Sharif, M., Jabeen, S., Kadry, S., & Ger, P. M. (2022). A New Model for Brain Tumor Detection Using Ensemble Transfer Learning and Quantum Variational Classifier. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022. https://doi.org/10.1155/2022/3236305

Moujahid, A., & Vadillo, F. (2022). Energy analysis of bursting Hindmarsh-Rose neurons with time-delayed coupling. CHAOS SOLITONS & FRACTALS, 158. https://doi.org/10.1016/j.chaos.2022.112071

Alirezazadeh, P., Dornaika, F., & Moujahid, A. (2022). Deep Learning with Discriminative Margin Loss for Cross-Domain Consumer-to-Shop Clothes Retrieval. SENSORS, 22(7). https://doi.org/10.3390/s22072660

Mateusz Ciok, K., Pascual Espada, J., & Gonzalez Crespo, R. (2024). Flex-request: Library to make remote changes in the communication of IoT devices. EXPERT SYSTEMS, 41(6). https://doi.org/10.1111/exsy.12994

Peralta, A. (2022). Analysis of the influence of environmental factors on emotional well-being. DYNA, 97(2), 169–175. https://doi.org/10.6036/10201

Francisco, V., Moreno-Ger, P., & Hervas, R. (2022). Application of Competitive Activities to Improve Students’ Participation. IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 15(1), 2–14. https://doi.org/10.1109/TLT.2022.3153174

Alonso, S., Moran, A., Perez, D., Prada, M. A., Fuertes, J. J., & Dominguez, M. (2022). Reconstructing Electricity Profiles in Submetering Systems Using a GRU-AE Network. In L. Iliadis, C. Jayne, A. Tefas, & E. Pimenidis (Eds.), ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022 (Vol. 1600, Issues 23rd International Conference on Engineering Applications of Neural Networks (EAAAI/EANN) CL-Chersonissos, GREECE PU-SPRINGER INTERNATIONAL PUBLISHING AG PI-CHAM PA-GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND, pp. 247–259). https://doi.org/10.1007/978-3-031-08223-8_21