Artículos del grupo

2023
  1. J. de Lucas, X. Rivas, S. Vilariño, and B. M. Zawora. On k-polycosymplectic Marsden–Weinstein
    reductions. J. Geom. Phys., 191:104899, 2023. 10.1016/j.geomphys.2023.104899.
  2. J. Gaset, A. López-Gordón, and X. Rivas. Symmetries, conservation and dissipation in timedependent
    contact systems. Fortschr. Phys., 71(8–9):2300048, 2023. 10.1002/prop.202300048.
  3. X. Rivas. Nonautonomous k-contact field theories. J. Math. Phys., 64(3):033507, 2023.
    10.1063/5.0131110.
  4. M. de León, J. Gaset, M. C. Muñoz-Lecanda, X. Rivas, , and N. Román-Roy. Multicontact
    formulation for non-conservative field theories. J. Phys. A: Math. Theor., 56(2):025201, 2023.
    10.1088/1751-8121/acb575.
  5. M. de León, M. Lainz, A. López-Gordón, and X. Rivas. Hamilton–Jacobi theory and integrability
    for autonomous and non-autonomous contact systems. J. Geom. Phys., 187:104787, 2023.
    10.1016/j.geomphys.2023.104787.
  6. J. de Lucas and X. Rivas. Contact Lie systems: theory and applications. J. Phys. A: Math.
    Theor., 56(33):335203, 2023. 10.1088/1751-8121/ace0e7.
  7. X. Rivas and D. Torres. Lagrangian–Hamiltonian formalism for cocontact systems. J. Geom.
    Mech., 15(1):1–26, 2023. 10.3934/jgm.2023001.
  8. M. de León, J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, and X. Rivas. Time-dependent contact
    mechanics. Monatsh. Math., 201:1149–1183, 2023. 10.1007/s00605-022-01767-1.
  9. M. A. Navarro and J. Sánchez. Some results for semi-stable radial solutions of k-Hessian equations
    with weight on Rn. Proc. R. Soc. Edinb. A: Math., 153(5):1751–1776, 2023. 10.1017/prm.2022.73.
  10. C. Argyros, M.I. Argyros, I.K. Argyros, Á.A. Magreñán, and Í. Sarría. Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields. J. Comput. Appl. Math., 426:115072, 2023. 10.1016/j.cam.2023.115072.
2022
  1. J. de Lucas, X. Gràcia, X. Rivas, N. Román-Roy, and S. Vilariño. Reduction and reconstruction of multisymplectic Lie systems. J. Phys. A: Math. Theor., 55(29):295204, 2022. 10.1088/1751-8121/ac78ab.
  2. X. Gràcia, X. Rivas, and N. Román-Roy. Skinner–Rusk formalism for k-contact systems. J. Geom. Phys., 172:104429, 2022. 10.1016/j.geomphys.2021.104429.
  3. A. Moysi, M. Argyros, I.K. Argyros, Á.A. Magreñán, Í. Sarría, and D. González. Local convergence
    comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications. J. Comput. Appl. Math., 404:113392, 2022. 10.1016/j.cam.2021.113392.
  4. Ioannis K. Argyros, Christopher Argyros, Johan Ceballos, and Daniel González. Extended comparative
    study between newton’s and steffensen-like methods with applications. Mathematics,
    10(16):2851, 2022. 10.3390/math10162851.
  5. Ioannis K. Argyros, Chirstopher Argyros, Michael Argyros, Johan Ceballos, and Daniel González.
    Extended multi-step jarratt-like schemes of high order for equations and systems. Mathematics,
    10(19):3603, 2022. 10.3390/math10193603.
  6. Ioannis K. Argyros, Hongmin Ren, and Daniel González. Improved convergence ball and error
    analysis of Müller’s method. Bol. Soc. Parana. Mat., 40, 2022. 10.5269/bspm.45367.
  7. Fernanda Tatiana Cox, Daniel González, Ángel Alberto Magreñán, and Lara Orcos. Enseñanza
    de estadística descriptiva mediante el uso de simuladores y laboratorios virtuales en la etapa
    universitaria. Bordón. Revista de Pedagogía, 74(4):103–123, 2022. 10.13042/Bordon.2022.94121.
2021
  1. J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas, and N. Román-Roy. A k-contact Lagrangian
    formulation for nonconservative field theories. Rep. Math. Phys., 87(3):347–368, 2021.
    10.1016/S0034-4877(21)00041-0.
  2. M. A. Navarro and J. Sánchez. A characterization of semistable radial solutions of k-Hessian
    equations. J. Math. Anal. Appl., 497(2):124902, 2021. 10.1016/j.jmaa.2020.124902.
  3. Michael Argyros, Ioannis K. Argyros, Daniel González, Ángel Alberto Magreñán, Alejandro Moysi,
    and Íñigo Sarría. Ball comparison between frozen Potra and Schmidt–Schwetlick schemes with
    dynamical analysis. Comp. Math. Methods, 3(6):e1186, 2021. 10.1002/cmm4.1186.
  4. Ioannis K. Argyros, Michael Argyros, Johan Ceballos, Mariana Ceballos, and Daniel González.
    Extensions on a local convergence result by Dennis and Schnabel for Newton’s method with
    applications. Computational and Mathematical Methods, 3(5):e1179, 2021. 10.1002/cmm4.1179.
2020
  1. M. de León, J. Gaset, M. Lainz-Valcázar, X. Rivas, and N. Román-Roy. Unified
    Lagrangian–Hamiltonian formalism for contact systems. Fortschr. Phys., 68(8):2000045, 2020.
    10.1002/prop.202000045.
  2. J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas, and N. Román-Roy. New contributions to the
    Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries.
    Int. J. Geom. Methods Mod. Phys., 17(6):2050090, 2020. 10.1142/S0219887820500905.
  3. J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas, and N. Román-Roy. A contact
    geometry framework for field theories with dissipation. Ann. Phys., 414:168092, 2020.
    10.1016/j.aop.2020.168092.
  4. X. Gràcia, X. Rivas, and N. Román-Roy. Constraint algorithm for singular field theories in the
    k-cosymplectic framework. J. Geom. Mech., 12:1–23, 2020. 10.3934/jgm.2020002.
  5. M. A. Navarro and J. Sánchez. Sharp estimates of semistable radial solutions of k-Hessian equations.
    Proc. R. Soc. Edinb. A: Math., 150(4):2083–2115, 2020. 10.1017/prm.2019.14.
  6. A. Farina and M. A. Navarro. Some Liouville-type results for stable solutions involving the
    mean curvature operator: The radial case. Discrete Contin. Dyn. Syst., 40(2):1233–1256, 2020.
    10.3934/dcds.2020076.
  7. C. Amorós, I. K. Argyros, D. González, Á. A. Magreñán, S. Regmi, and Í. Sarría. New
    improvement of the domain of parameters for Newton’s method. Mathematics, 8(1), 2020.
    10.3390/math8010103.
  8. C. Amorós, I. K. Argyros, A. A. Magreñán, S. Regmi, R. González, and J. A. Sicilia. Extending
    the applicability of stirling’s method. Mathematics, 8(1):35, 2020. 10.3390/math8010035.
  9. Fabian Herrera, Rodrigo Niño, Carlos Enrique Montenegro-Marín, Paulo Alonso Gaona-García,
    Iñigo Sarría Martínez de Mendívil, and Rubén González Crespo. Computational method for
    monitoring pauses exercises in office workers through a vision model. J. Ambient Intell. Humaniz.
    Comput., 12:3389–3397, 2021. 10.1007/s12652-020-02391-3.
  10. Ioannis K. Argyros, Ángel Alberto Magreñán, Alejandro Moysi, Íñigo Sarría, and Juan Antonio
    Sicilia Montalvo. Study of Local Convergence and Dynamics of a King-Like Two-Step Method
    with Applications. Mathematics, 8(7):1062, 2020. 10.3390/math8071062.
  11. Sergio Rios-Aguilar, Íñigo Sarría Martínez de Mendivil, and Marta Beltrán Pardo. NFC and VLC
    based Mobile Business Information System for Registering Class Attendance. Int. J. Interact.
    Multimed. Artif. Intell., 6(2):7, 2020. 10.9781/ijimai.2020.05.001.
  12. P. Maroju, Á. A. Magreñán, Í. Sarría, and Abhimanyu Kumar. Local convergence of fourth and
    fifth order parametric family of iterative methods in Banach spaces. J. Math. Chem., 58:686–705,
    2020. 10.1007/s10910-019-01097-y.
  13. Ioannis K. Argyros, Ramandeep Behl, Daniel González, and Sandile S. Motsa. Ball convergence
    for combined three-step methods under generalized conditions in Banach space. Stud. Univ.
    Babes-Bolyai Math., 65(1):127–137, 2020. 10.24193/subbmath.2020.1.10.
  14. Alejandro Moysi, Ioannis K. Argyros, Samundra Regmi, Daniel González, Á. Alberto Magreñán,
    and Juan Antonio Sicilia. Convergence and dynamics of a higher-order method. Symmetry,
    12(3):420, 2020. 10.3390/sym12030420.
  15. I.K. Argyros, J. Ceballos, D. González, and J.M. Gutiérrez. Extending the applicability of Newton’s
    method for a class of boundary value problems using the shooting method. Appl. Math.
    Comput., 384:125378, 2020. 10.1016/j.amc.2020.125378.
  16. María Hernández-Herrera, Arianni Batista, and Daniel González. Del cine digital al cloud computing
    en el consumo cinematográfico de jóvenes ecuatorianos. Cuadernos.info, (44):195–208, 2020.
    10.7764/cdi.44.1450.
2019
  1. C. Amorós, I. K. Argyros, R. González, Á. A. Magreñán, L. Orcos, and Í. Sarría. Study of a high
    order family: Local convergence and dynamics. Mathematics, 7(3), 2019. 10.3390/math7030225.
  2. Francisco I. Chicharro, Elena Giménez, and Íñigo Sarría. The enhancement of academic performance
    in online environments. Mathematics, 7(12):1219, 2019. 10.3390/math7121219.
  3. Íñigo Sarría Martínez De Mendivil, Rubén González Crespo, Alexander González-Castaño, Ángel
    Alberto Magreñán Ruiz, and Lara Orcos Palma. Herramienta pedagógica basada en el desarrollo
    de una aplicación informática para la mejora del aprendizaje en matemática avanzada. Rev. Esp.
    Pedagog., 77:274, 2019. 10.22550/REP77-3-2019-06.
  4. Ioannis K. Argyros, Ángel Alberto Magreñán, Lara Orcos, and Íñigo Sarría. Unified Local Convergence
    for Newton’s Method and Uniqueness of the Solution of Equations under Generalized
    Conditions in a Banach Space. Mathematics, 7:463, 2019. 10.3390/math7050463.
  5. Ioannis K. Argyros, Á. Alberto Magreñán, Lara Orcos, and Íñigo Sarría. Advances in the Semilocal
    Convergence of Newton’s Method with Real-World Applications. Mathematics, 7(3):299, 2019.
    10.3390/math7030299.
  6. Ramandeep Behl, Í. Sarría, R. González, and Á.A. Magreñán. Highly efficient family of iterative
    methods for solving nonlinear models. J. Comput. Appl. Math., 346:110–132, 2019.
    10.1016/j.cam.2018.06.042.
  7. Paulo Alonso Gaona-García, Carlos Enrique Montenegro-Marin, Íñigo Sarría Martínez de Mendivil,
    Andrés Ovidio Restrepo Rodríguez, and Maddyzeth Ariza Riaño. Image Classification
    Methods Applied in Immersive Environments for Fine Motor Skills Training in Early Education.
    Int. J. Interact. Multimed. Artif. Intell., 5(7):151–158, 2019. 10.9781/ijimai.2019.10.004.
  8. Ioannis K. Argyros, Á. A. Magreñán, L. Orcos, Íñígo Sarría, and Juan Antonio Sicilia. Different
    methods for solving STEM problems. J. Math. Chem., 57:1268–1281, 2019. 10.1007/s10910-018-
    0950-1.
  9. Fernando Carlos López Hernández, Luis de-la Fuente Valentín, and Íñigo Sarría Martínez de
    Mendivil. Detecting Image Brush Editing Using the Discarded Coefficients and Intentions. Int.
    J. Interact. Multimed. Artif. Intell., 5(5):15–21, 2019. 10.9781/ijimai.2018.08.003.
  10. Ioannis K. Argyros, Ramandeep Behl, Daniel González, and S.S. Motsa. Ball convergence for a
    derivative free method with memory for solving nonlinear equations. Commun. Appl. Nonlinear
    Anal., 26(1):86–100, 2019.
2018
  1. Ioannis K. Argyros, Alberto Magreñán, Íñigo Sarría, and Juan Antonio Sicilia. Improved convergence
    analysis of the Secant method using restricted convergence domains with real-world
    applications. J. Nonlinear Sci. Appl., 11(11):1215–1224, 2018. 10.22436/jnsa.011.11.01.
  2. Ioannis K. Argyros, Elena Giménez, Á. A. Magreñán, Í. Sarría, and Juan Antonio Sicilia. Improved
    semilocal convergence analysis in Banach space with applications to chemistry. J. Math. Chem.,
    56:1958–1975, 2018. 10.1007/s10910-017-0823-z.
  3. Á. A. Magreñán, I. K. Argyros, Í. Sarría, and J. A. Sicilia. Local convergence and the dynamics
    of a family of high convergence order method for solving nonlinear equations. AIP Conf. Proc.,
    1978(1):330004, 2018. 10.1063/1.5043940.
  4. P. Maroju, Á. A. Magreñán, S. S. Motsa, and Í. Sarría. Second derivative free sixth order continuation
    method for solving nonlinear equations with applications. J. Math. Chem., 56:2099–2116,
    2018. 10.1007/s10910-018-0868-7.
  5. Ramandeep Behl, D. González, Prashanth Maroju, and S.S. Motsa. An optimal and efficient
    general eighth-order derivative free scheme for simple roots. J. Comput. Appl. Math., 330:666–
    675, 2018. 10.1016/j.cam.2017.07.036.
  6. Ioannis K. Argyros and Daniel González. Extending the usage of newton’s method with applications
    to the solution of bratu’s equation. Mathematics, 6(12):274, 2018. 10.3390/math6120274.